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LETTER TO THE EDITOR 

Mean field renormalisation group for the disordered 
transverse Ising model 

J A Plascakt 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 18 January 1984 

Abstract. The mean field renormalisation group approach is applied to the bond diluted 
transverse Ising model. The critical surface in the temperature-transverse field-concentra- 
tion space is obtained for the two- and three-dimensional models and estimates of critical 
exponents are also presented. 

The mean field renormalisation group method (MFRG) has been recently proposed by 
Indekeu et a1 (1982) for computing critical properties of lattice spins systems. This 
method combines mean field results for small clusters of spins with renormalisation 
group ideas. It is based upon a comparison of the behaviour of clusters of different 
size in the presence of symmetry breaking boundary conditions (mean field) which 
simulate the effect of surrounding spins in the infinite system. While mean field theory 
identifies the order parameter of this field with the order parameter of the cluster, the 
MFRG assumes that the order parameter scales in the same way (Indekeu et a1 1982). 

The MFRG approach has been applied to classical (Ising and q-state Potts models) 
and quantum (transverse Ising model at zero temperature) pure spin systems (Indekeu 
er a1 1982) and classical random systems including spin glass (Droz et a1 1982). Quite 
good results have been obtained using just the simplest choice for the clusters namely, 
one- and two-spin clusters respectively. In several cases, the critical coupling is the 
same as the one obtained by the Bethe approximation. The critical exponents, though 
not very precise, are substantially better than those of mean field and Bethe calculations. 
More recently, the MFRG has also been applied to geometric phase transitions (De’Bell 
1983) and the triangular Ising antiferromagnet (Slotte 1983). 

In this letter we study the transverse Ising model (TIM) with quenched bond dilution 
described by the Hamiltonian 

where the U’S are Pauli spin matrices, ai = is the transverse field, and the sums run 
over sites on a d-dimensional lattice. The nearest-neighbour exchange coupling Jij are 
random variables with probability distribution 

(2) P(J i j )  = (1 - P)S(J i , )  + PS(Ji j  - J ) .  

t Permanent address: Departmento de Fisica, Universidade Federal de Minas Gerais, CP 702, 30 000 Belo 
Horizonte, Minas Gerais, Brazil. 
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As conjectured by Harris (1974) this model should display a discontinuity in the critical 
transverse field when the bond concentration p reaches the critical value pc at zero 
temperature. Earlier theoretical treatments of the diluted TIM such as series expansions 
(Elliott and Saville 1974) and CPA calculations (Lage 1976) were unable to pick out 
the zero temperature behaviour. Real space renormalisation group calculations on the 
two-dimensional bond diluted TIM (Stinchcombe 1981, dos Santos 1981, 1982) have 
picked up this discontinuity due to the presence of two fixed points at the percolation 
threshold. More recently, Saxena (1983) and Plascak (1983) have studied the two- 
and three-dimensional bond- and site-diluted TIM by using a two-spin cluster approxi- 
mation and a variational procedure for the free energy respectively. The complete 
phase diagrams in the temperature-transverse field-concentration space agree with 
Harris’s conjecture. 

In order to study the critical properties of the model ( l ) ,  we follow the MFRG 
procedure of Indekeu et a1 (1982) and consider the simplest choice for the clusters, 
as illustrated in figure 1 for d = 3 with N’ = 1,  and N = 2 spins respectively. The 
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Figure 1. Schematic representation of one spin cluster (a) and two-spin cluster (b) in three 
dimensions. Broken lines represent interactions with nearest-neighbour spins. 

z-component of the boundary spins in each cluster is fixed at b‘ and b respectively 
and, as in this case the phase transition is of second order, they are assumed to be 
very small. The Hamiltonian for the single spin then reads 

2d 

j =  1 
H I =  -R’u; - J + f  b’ ,  (3) 

where R’ is the scaled transverse field and ui interacts with its 2d nearest neighbours 
through a term - J ’ a f b ’ .  Diagonalisation of the Hamiltonian (3) is simple. After 
averaging over the disorder, the corresponding magnetisation per spin for small b’ can 
be written as 

m, =2dp’b‘ tanh(a’K’)/a’, (4) 

where K’ = J ’ /  kgT‘,  a’ =a’/ J ’  and p’ is the scaled concentration of bonds. Similarly, 
the Hamiltonian of the two-spin cluster is given by 

H ~ = - J ~ ~ u ~ ( T S - R ( U ; + ( T ; ) -  C J l p f b -  J 2 , ~ ; b .  ( 5 )  
j Z  1 j # 2  

In this case the spin U, interacts directly with u2 through a term -Ju;u; and both 
u1 and u2 interact with their ( 2 d -  1) nearest-neighbour spins through terms - J a f b  
and -JuSb respectively. Diagonalisation of H2 is not simple. However, as we are 
interested in small values of the mean field, a perturbation expansion can be worked 
out in order to obtain the partition function in powers of b (Plascak 1983, Saxena 
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1983). The resulting magnetisation per spin, after averaging over the disorder, can 
be written as 

m2=[p(1-p)(2d-1) tanh(aK)/a+p2(2d-1)S/A]b, (6 )  

where K = J /  kBT, a = a/ J, and p is the bond concentration and 

A =  2 cosh K +2cosh KR, 

S = eKRC - eCKRD - 2 eK / a 2 ,  

{E} =[1/a2+2*R/a2]/R,  

R =(1+4a2)’ l2 .  (7) 

Imposing now a scaling relation of the form m1 = (m2 between such approximate 
magnetisations and assuming a similar scaling relation between the parameters b’ and 
b (Indekeu et af 1982), one gets 

2dp’ tanh(a’K’)/a’ = p ( l - p ) ( 2 d - l )  tanh(aK)/a+p2(2d-  l)S/A, (8) 

which is independent of 6. Equation (8) can be viewed as a renormalisation recursion 
relation amongst K’, a’, p’ and K, a, p. It is clear that one cannot determine the 
complete renormalisation flow diagram in the K, a, p space from this equation alone. 
It is, however, interesting to look first at the fixed point equation associated with 
equation (8): 

(2dp-p+ 1) tanh(aK)/a  =p(2d - l)S/A. (9) 

Equation (9) is exactly the same as those obtained by Saxena (1983) and Plascak 
(1983) for the phase diagram of the disordered TIM. Thus, as far as the critical surface 
is concerned, the MFRG using the clusters illustrated in figure 1 is equivalent to the 
pair approximation used in previous works. Clearly, only a few points on this critical 
surface turn out to be real fixed points of a fully specified renormalisation transforma- 
tion. Among them are the pure Ising model fixed point ( p = 1, a = 0) and the pure 
zero temperature TIM fixed point ( p =  1,  K =a). The logarithmic slope 
( l/ac) dac/dp = 0.91 of the phase boundary at p = 1 and T = 0 for the two-dimensional 
model is comparable to the value 1.07 obtained by a real space renormalisation group 
calculation (dos Santos 1981). For d = 3 the corresponding slope is 0.94. 

Although with the present approach we are unable to determine the complete flow 
in the parameter space of the Hamiltonian ( l ) ,  equation (8) can be used to estimate 
critical exponents associated with some invariant sets in the K, a, p space. This can 
be done by computing 

[a@‘/aCLlFP = f Y r ,  (10) 
where can be K, a, or p, f = ( N / N ’ ) ’ / d  is the rescaling factor and the derivative is 
taken at the fixed point of the particular invariant set considered. Table 1 lists some 
values of the critical exponents associated with the corresponding invariant set in the 
K, a, p space obtained from equations (8)-( 10) in comparison with exact (if available) 
or other approximate results for the two-dimensional model. Besides the good results 
for the critical points, it is interesting to note that also a reasonable estimate is obtained 
for y,  which is given by 

(11) l ydd  = 1 + 1/2d, 
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Table 1. Critical points and critical exponents obtained from equations (8)-(10) in com- 
parison with exact (if available) or other approximated results for the two-dimensional 
model. 

~~~ ~~ 

d = 2  

p = l  Kc Yr 
a = O  0.346 0.60 

0.609 1.49 
0.441 1 .oo exact 

(a) 

p = l  a C  Y, 
K = m  3.334 0.700 

1.55 2.016 
3.08 1.587 

(E) 

lb) 

P C  YP 
0.644 

0.618 1.224 
0.5'" 3/4(d' exact 

a = O  

(a) 
K = m  113 

K = m  PC a, Y P  Y, 
1.277 0.644 0.754 

0.618 0.873 1.224 1.689 (a) 
113 

( a )  Real space renormalisation group (dos Santos 1982). 
(b) Ground state perturbation expansions (Pfeuty and Elliott 1971). 

(dl den Nijs conjecture for carresponding Potts model (den Nijs 1979). 
Duality arguments (Sykes and Essam 1964). 
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Figure 2. Critical exponent y, as a function of a for various values of the concentration. 
The quantum ( T  = 0) behaviour of y, as a function of a is given by the broken line. The 
quantum behaviour as a function of the concentration is shown in the inset. 
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and is independent of any invariant set. Such independence does not, however, occur 
when computing either y, or yT. Figure 2 shows y, as a function of a for different 
values of the concentration. The continuous variation with the transverse field, as well 
as some spurious negative values for p = p c ,  are a consequence of having only one 
recursion relation for the parameters of the system. However, a crossover between 
the classical system ( T  it 0) and the quantum system ( T  = 0) is apparent in this figure. 
The broken line shows the variation of y, for the quantum system ( T = 0 )  with the 
critical transverse field (or equivalently with the critical concentration shown in the 
inset). Another crossover driven by dilution is also apparent in this case. 

Finally, the present approach is easily extended to dimensions above d = 2, where 
standard real space renormalisation methods are not practicable and other approximate 
results for the bond diluted TIM are definitely smaller. Table 2 shows some estimates 
of critical exponents obtained for the three-dimensional model. Similar curves to those 
illustrated in figure 2 can also be drawn for d = 3. 

Table 2. The same as table 1 for the three-dimensional model. 

d = 3  

p = l  Kc YT 
a = O  0.203 0.651 

0.21 4(a) 1 .587'b) 

p =  1 a, Ya 
K = a ,  5.348 0.707 

5.1 1.724") 

PC Y P  (2 = O  
K = a ,  0.2 0.667 

K = a ,  PC a, Y P  Ya 
0.2 1.277 0.667 0.784 

(a) Domb (1974). 
(b) Le Guillou and Zinn-Justin (1980). 
('I Pfeuty and Elliott (1971). 
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